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A rigorous solution of the mirror-symmetry problem of the closing up of the sides of a crack under the 

action of a remotely applied compressive load is constructed. The correctness of using the perturbation 

method to solve a Riemann boundary-value problem when the mapping function differs from a simpler 

small correction is proved. An asymptotic solution of the problem of a closing crack can be successfully 

obtained in this way and a second approximation can be constructed for representing the normal 

stresses on the contour. The use of the perturbation method unexpectedly turns out to be extremely 

convenient since a sequence of Riemann boundary-value problems have a common matrix coefficient 

and differ solely in the vectors of the free terms. For this reason, the canonical solution of the 

homogeneous problem is constructed just once. 

1. THE METHOD OF BOUNDARY REPRESENTATIONS 

The method of boundary representations of the basic characteristics of the stress-strain state 
on the contour of a body [l-3], oriented towards simply connected domains which are 
transformed into canonical rational functions, is convenient for analysing fields of two- 
dimensional elastic, visco-elastic and viscoplastic media. It consists of the following: any linear 
combination of basic mechanical quantities on a boundary is a condition of the linear coupling 
of the boundary values of the analytic functions. For example, the representation 

0, = s@r - s2i2;1,+ - ~$2; + s$2;, 2iz, = s&2: + s2f2g - s&l; - s2Q; 

(1.1) 

4pA ae so” ,Q,4 = K A*#‘g*Q; + Q'Q; + A*o"'~*Q; + K Q*i& 

ud = Im[A(u + iv)], A = eei6 

holds in the case of planar problems in the theory of elasticity, where CT,, T,, CT, are the 
components of the stress tensor, U, is the projection of a displacement in a direction which 
makes an angle fi with the y-axis and the quantities s,, s,, m are determined by a conformal 
mapping (ord denotes the order of a polynomial) 

(1.2) 
mo = ordQ,&>, ml = ordQ(c>, m = max(mo +m, - 1, 2m, - 2) 
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A pair of linear boundary conditions on an arc of the boundary corresponds to the Riemann 
matrix boundary-value problem 

Qr =GfZ;+g, beaD+; G=kjl2x2r g=Ig,, g21 (1.3) 

The determinant of the matrix-coefficient has a constant modulus, equal to unity as a 
consequence of the symmetry of the analytic functions 

(1.4) 

If the boundary of the canonical domain is subdivided into a system of arcs and individual 
linear boundary conditions are retained on each of the arcs then this, as a whole, constitutes a 
Riemann boundary-value problem with a discontinuous matrix coefficient with piecewise- 
rational elements. The distribution laws for mechanical quantities along a boundary of a body 
can be calculated directly using the formulae of the boundary representation. 

It is possible to establish a correspondence between a set of systems of singular integral 
equations and one and the same Riemann boundary-value problem. The full index of the 
equations is distinguished from the initial boundary-value problem by the magnitude of the 
index of the basic problem. 

2. FORMULATIGN OF THE PROBLEM OF A CLOSING CRACK 

Let us combine the plan of a physical plane with a crack and the complex plane z = x + iy. 
The contour aD of the crack is subdivided into a pair of non-intersecting arcs &, Lz and a 
point y E L2 is set in a one-to-one continuous correspondence with any point t E & by means of 
contact. 

The conditions for the contact of the sides are (U(t) is the displacement vector at the point t) 

a,(t)fi7,(r)=(T,(y)+iZn(y), U(r)-U(y)=y-r (2.1) 

Let us consider a class of domains which are mapped onto a circle by the rational function 

z = o(5) = AC-' +u,~+u~~*+...+u,& (2.2) 

By virtue of the requirement that the crack can close up and the constraints on the smallness 
of the linear and angular displacements, the crevice must have a pair of cuspidal points on the 
contour and its cross-section must be small compared with its spread. 

For one class of such cracks the coefficients can be selected from the conditions that the 
affices of the points of intersection of the contour with the y-axis have moduli of the order of 
SC<: A, where A is the spread parameter, and the order of the tangency of the sides at the 
cuspidal points is such as to allow the determination of all the coefficients aj. 

In the simplest case of a bisymmetric crack, the mapping (1.2) has odd real coefficients [4]. In 
particular, when n = 3, the function 

(2.3) 

which maps the contour of a crack with a spread 2A, and a cross-section 46 onto a circle 
satisfies all the requirements enumerated above. 

In the case of mirror symmetry, problem (2.1) is expressed in the form of a Riemann 
boundary-value problem 
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*+=1 II -(c4 c’) 
Kc-t? (lC+l)Fcf 

“(K + 1)W *- _ 2p C + z 
lc(c+F) II 

) 

II II 

cf;+, 
ICC-C’ -CO 

crEaD+ 

c=Dm’(b), E’=Z-CC+fl, tX=2, p=max(O, n-1) 

3. THE CONSTRUCTION OF A RIGOROUS SOLUTION 

Let us write down the characteristic functions of the matrix coefficient G in Eq. (2.4) 

h,=l, I&p% 
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(2.4) 

(3.1) 

The representation of the matrix G in the canonical Jordan form (R is a polynomial matrix) 

(3.2) 

enables us to construct the homogeneous boundary-value problem 

N+ = HN-, N’(c)= det R(c)R-‘({)SL*(@ 

which is a combination of Riemann problems for each of the piecewise-analytic functions 
A’:&) with coefficients 1, hz on the periphery XI+. The canonical solution of the first is X: = 1 
while, to construct the canonical solution of the second, we decompose the polynomial 

into factors. 
Each of the factors has zeros only in the domains D* identified by symbols or on the 

boundary ZY. The rational function 4 will then have the representation 

r=p+r++r- = 2n, p = ordp’(@, r* = ordp*(t) 

since f(c) can only vanish at the stationary points of the mapping which are located on the real 
axis due to the fact that the coefficients of the mapping are real. consequently, the 
representation p’{T;) = (5” - 1)” holds and, because of this, we obtain 

p’(t)/ jT’(c-‘) z (-l)kE,2k, 2k = p 

The index is equal to 2r and the canonical solution is given by the formulae [5] 

x2+(5) = 5’P-(5>l F+(5-‘), x;(5) = ipF-(5-‘)/ p’(5) (3.3) 

The fundamental solution of a homogeneous problem for Eq. (2.4) can be written in the 
form 

(3.4) 
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(R, X; are defined in accordance with (3.2) and (3.3)). We know [6] that, having the 
fundamental soiution, a canonical X* can be constructed for a finite number of steps and that 
all the operations are replaceable by a single matrix multiplier M which acts on Z* from the 
right [7] 

X* = Z*M (3.5) 

The particular indices of this solution are 0, 2r. Since the functions at, must be of an order 
not greater than n + 1 at infinity, the general solution of problem (2.5) is 

(3.6) 

where a column of the polynomials is characterized by the orders n + 1, n + 1 c 2r. 
On account of the fact that the matrix X’ is rational (since Z’, M are rational) and the 

vector g (which is defined in accordance with (2.4)) also has rational components, the 
integrand can be decomposed into simpler terms and the quadratures carried out in the final 
form. 

A particular solution is picked out when requirements are imposed regarding the symmetry 
of the functions and the expansion of the Kolosov-Muskhelishvili functions in the neighbour- 
hood of the origin of coordinates in a known form. 

The effectiveness of the construction of the solution is therefore predetermined in each 
actual case. The difficulty is associated with the purely technical question of the decomposition 
of the polynomials into the simplest factors. 

4. ASYMPTOTIC SOLIJTION 

Even in the relatively simply case of the mapping (2.3), the execution of the operations with 
respect to the decomposition of the polynomials into their factors and the solution in para- 
metric form (that is, without fixing the numerical values for the parameters A, a,, tq etc.) is 
problematic. 

The use of a small parameter S enables us to use a perturbation method to solve the 
Riemann boundary-value problem. Actually, the function (2.3) can be represented in the form 

As can be seen, the function o,(5) produces a mapping of the plane into a circle with a cut 
[-1, l] along the real axis and the function o,(Q introduces a correction to the shape of the 
domain. 

We will show that the use of the perturbation method does not infringe the class of functions 
which are used to solve the Riemann boundary-value problem. 

The asymptotic expansion U = U, + 6U, + 6?J, + . . . of the solution of a biharmonic equation 
leads to a series of biharmonic equations A?J, = 0 (k = O-1,2,. . . ). 

Each of the functions U, can be represented in the form of partial compiex potentials in 
accordance with Goursat formula 

and the expansions 
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q=(po+&p,+62cp,+ . ..I x=xo+6x,+62x2+*.. 

are satisfied by virtue of linearity. 
Since the basic potentials a, Y employed to substantiate the boundary representation 

formulae are expressed in terms of cp, x in a linear manner, the relations 

CD=CI+)+&D,+62@2+ ..*, Y=Yyb+6Y,+62Y5+... 

also hold for them, where each partial analytic function is expressed in terms of its prototype in 
a way which is identical to that for the sum as a whole. 

Since the parameter 6 is real, the form of the functions 

which are defined using symmetry, is preserved. 
In the case of the meromorphic functions 6 and Fz [l-3], in the definition of which there is a 

transformation function apart from the Kolosov-Muskhelishvili functions (we shall confine 
ourselves to the case when the function o consists of two terms, see (4.1)), we have the 
following asymptotic expressions in which the arguments E,, E,-’ are omitted for brevity (the 
argument 5-l participates in an obligatory order in the functions which are picked by the 
symbol of complex conjugation) 

Nevertheless, the analytic functions 

R’=R’ +m* +s2i2* + s SO sl s2 -.* (s=l, 2) 

preserve the form in accordance with which they were defined [l-3] 

and each of the functions is of the order of a + p at infinity. The general form of the symmetry 
conditions 

n, (5) = 5a+h5+ ,_s &) (s=i, 2; k=o, 1, 2, . ..) (4.4) 

remains true. 
We will now consider the conditions on the boundary of a body which are reduced to a 

Riemann boundary-value problem for two pairs of functions R* = (C2:, ai} 

R+ =GQ-+g, ocilD+ 

On expanding the matrix coefficient in an asymptotic series, we can write 
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after which the boundary-value problem is decomposed into a series of problems 

n; = G&I, +go, fir = Go& +(g, + G,%) 

n~=GoR;+(gz+G,n,+G,n,),... (a~aD+) 
(4.5) 

Hence, the use of the perturbation method to solve the linear Riemann boundary-value 
problem involves the successive construction of the solutions of the partial boundary-value 
problems (4.5) and the separation of the particular solutions from the general solutions which 
is subject to the traditional symmetry conditions (4.4) and to the condition that the functions 
C+,, Y0 should be representable in the neighbourhood of the origin of coordinates in the form 

00 =r-JS+ . ..) Y(J =r’+KJe+ . . . . (4.6) 

since the parameter 6 does not occur in the coefficients appearing here. We recall that the 
constants r, r’ specify the stressed state at infinity and the vector J is proportional to the 
principal vector of the external forces applied to the contour D. 

On expanding the coefficients of problem (2.4) in an asymptotic series, in the case of the 
transformation (2.3) we obtain 

The first of the partial problems (4.5) is homogeneous 

L-2; = -E*R;, !2; = -o*R;, d E aD+ 

(4.7) 

(4.8) 

and, in the class of first-order functions, has the general solution 

Here, only the even real coefficients are left (cyclic two-fold symmetry and mirror symmetry; 
the proof of these cases with respect to Kolosov-Muskhelishvili functions is given in [8]). 

The symmetry conditions (4.3) and the representations (4.6) in which .I = 0 and r, I” are 
real on account of the above mentioned symmetry, enable us to conclude that 

which separates out the particular solution 

nco = rfcs), Go = rY.04) 
(4.10) 

q. = --r’f(C), fiio = -rC*fQ 

The second partial problem (4.5) has the same matrix coefficient as the first. This immedi- 
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ately characterizes it not as a system but as a combination of Riemann problems. After 
elementary algebra, solely with the participation of the basic approximation which has just 
been found, its free terms takes the form 

cr2 -l)(a2 --cT2) 2p-(r’+r) 
2 

d [2fl+ lc(r’+ r)] H 
(4.11) 

The general solution of the problem (here Sz, is the vector of the second approximation) 

Cl: = G,n; + (g, + G,Q,), CF E iID+ 

has the form 

a;+, = -b,(t4 -e2 -1)+Q$+Q;c2 

Sr;, =-b, -Q&‘-Q;S”, 4 =3Ac(2f.t-r’-I-)/&+1) 

(4.12) 

From conditions (4.3) and (4.6), we obtain the coefficients 

& =~[6p-3r’+(K-2)r]/(K+l), Q; =A$- 

& =3Ae[2p+1Cr’+(2K+l)r]/(K+l), & =b(r’-2r) 

Q; = -~[6~-(4~+l)r’+(K-2)r]/(K+l), &=-3&r 

(4.13) 

with which the process of separating out a particular solution in the problem of the second 
approximation is completed. 

The partial boundary-value problem in the next approximation (and so on) has the same 
matrix coefficient G, and, next time also, we do not have a system but a combination of 
Riemann problems. The process of constructing its solution is simple and only minor 
difficulties are encountered at the stage of separating out a particular solution and this is solely 
attributable to the relative complexity of the expressions. We shall confine ourselves to the 
approximations which have been found and assume that an asymptotic solution is constructed 

The elastic field can subsequently be constructed using traditional methods. Diagrams of the 
stresses on the boundary can be constructed starting from the formulae of the boundary 
representation. 

In view of the fact that there are no shear stresses on the boundary, we obtain a simple 
expression for the normal stress 

We also expand the normal stress in an asymptotic series 

after which, from (4.10), we find that 
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Fig. 1. 

On substituting the solution found above, we determine that 

Fig. 2. 

d nO = r+r’, o,, = -lOl-+6 2p+fl;+t;rc+ l)l- (*2 + 52) 

and, on transferring to the z-plane, we obtain 

The profile of the crack, which has been substantially expanded along the y-axis for clarity, is 
shown in Fig. 1. A plot of the normal stresses at the contact is shown in Fig. 2. The first 
approximation, which corresponds to a homogeneous field at infinity, is shown by the dashed 
line. It is assumed that a confining compressive stress, P_, acts at infinity: K = 2, p = 1000 P,, 
A, = 1, 4@3 = P_ 18, The graph of P = 6, IP, has even sy~et~. 
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